Question Number	Answer	Mark
1(a)	Substitution into $R = \rho l/A$ (ignore powers of 10)(1)Conversion cm to m(1) $R = 540 \ (\Omega)$ (1)	3
	Example of calculation $R = (5.4 \times 10^{-3} \Omega \text{ m} \times 0.15 \text{ m})/1.5 \times 10^{-6} \text{ m}^2$ $R = 540 \Omega$	
1(b)(i)	Resistance/resistivity changes with temperature (allow wire gets hotter etc)(1) As temperature increases, resistance/resistivity decreases (this statement implies 1st mark so scores 2)	2
1(b)(ii)	Current flow causes a heating effect (1)	
	Resistance of lead decreases/ number of charge carriers increases (1) Relates to $V = IR$ e.g. $R \neq 1/I$ or 'because V is constant as $P = I^{+}$ (1)	3
	Total for question $-$	8

Question	Answer	Mark
Number		
2(a)	Use of $I = nqvA$ with $e \ \underline{1.6 \times 10^{-19}}$ C and $\underline{8 \times 10^{-3}}$ A	1
	$v = 2.8 \times 10^{-7} \mathrm{m \ s^{-1}}$	1
(b)	Value for semiconductor is <u>much</u> greater	1
	<i>n</i> for semiconductor (much) less than for conductor	1
(c)	Its resistance decreases	1
	because (as temperature increases) n increases OR there are more electrons	
	/charge carriers.	1
		6

Question	Answer	Mark
Number		
3(a)	n; number of charge carriers per unit volume OR number of charge carriers m ⁻³ OR charge carrier density (1)	2
	 v; drift velocity (of charge carriers) OR average velocity OR drift speed (1) 	
	(accept free electrons or charge carriers throughout)	
(b)	Units of I and q A and A s OR C s ⁻¹ and C (1)	
	Units of n m ⁻³ (1)	
	Units of v and A m s ⁻¹ and m ² (1)	3
	Total for question	5

Question	Answer		Mark
Number			
4(a)	best fit line	(1)	
	use of gradient Or use of <i>R</i> / <i>l</i> from graph or table	(1)	
	use of $\rho = RA/l$	(1)	
	resistivity = $4.7 \times 10^{-7} \Omega$ m (range 4.5 to $4.8 \times 10^{-7} \Omega$ m)	(1)	4
	Example of calculation		
	gradient = $4.4 \ \Omega \div 1.0 \ m = 4.4 \ \Omega \ m^{-1}$		
	$\rho = A \times \text{gradient} = 1.06 \times 10^{-7} \text{ m}^2 \times 4.4 \Omega \text{ m}^{-1}$		
	resistivity = $4.66 \times 10^{-7} \Omega m$		
4(b)	temperature increases (with increasing current)	(1)	
	resistance/resistivity would have increased (with temperature)	(1)	2
		(1)	
4(C)	Precaution	(1)	
	Explanation	(1)	2
	E g ensure good contact (e.g. tight croc clips); so pd across contact resistance		
	doesn't make V results inaccurate		
	$E \sigma$ Avoid pressing too hard on wire as a deformation would affect cross-		
	sectional area and therefore resistance		
	e.g. ensure wire is straight so length measurement is accurate		
	e.g ensure eves perpendicular to scale to avoid parallax erro		
	Do not credit:		
	diameter of wire since area is not in the table		
	repeat and average		
	high resistance voltmeter		
	keep temperature constant		
	Total for question		8

Question	Answer		Mark
Number			
5(a)	The (maximum) length is (directly) proportional to the area	(1)	1
5(b)(i)	Use of $\rho l/A = R$	(1)	
	$R = 1.34 (\Omega)$	(1)	2
	Example of calculation		
	$\overline{R} = 1.68 \times 10^{-8} \Omega \text{ m} \times 80 \text{ m} \div 1.0 \times 10^{-6} \text{ m}^2$		
	$R = 1.34 \Omega$		
5(b)(ii)	Use of $P = I^2 R$	(1)	
	P = 160 W allow ecf from (i)	(1)	2
	Example of calculation		
	$\frac{DAUDDO OF CALCULATION}{P - (11 \text{ A})^2 \times 1.34 \text{ O}}$		
	P = 162 W (157 W if they use 13 O)		
5(b)(:::)	$I = 102 \text{ W} (157 \text{ W II they use } 1.5 \text{ M})$ $I_{100} \text{ of } V = ID \text{ Dragge of } D = VI \text{ Orange of } D = V^2/D$	(1)	
5(D)(III)	Use of $V = IR$ Of use of $P = VI$ Of use of $P = V/R$	(1)	•
	V = 15 V allow ecf from (1) and/or (1)	(1)	2
	Example of calculation		
	$V = 11 \text{ A} \times 1.34 \Omega = 14.7 \text{ V}$ (14.3 V if 1.3 Ω is used)		
5(c)	To prevent (use of a cable with) resistance that is too large		
	(Accept answers that refer to maintaining or not exceeding a resistance of about	(1)	
	1.3Ω		
	Meaning more energy / power / p.d. available for the shredder	(1)	2
		(-)	-
	Total for Question		9

Question	Answer		Mark
Number			
6(a)	State $(V =) E - Ir$	(1)	
	Correct substitution	(1)	
	p.d. = 11V	(1)	
	OR Use of $(V =)$ <i>Ir</i> to attempt to find lost volts	(1)	
	Subtraction from E	(ÍÍ)	
	p.d. = 11V	(1)	
	OR		
	Use of $E = I(R+r)$ to attempt to find R	(1)	
	Use of $V = IR$ with the value of R calculated	(1)	
	p.d. = 11V	(1)	3
	Example of calculation		
	$V = 12 \text{ V} - 3 \times 10^{-3} \Omega \times 400 \text{ A}$		
	p.d. = 10.8 V		
6(b)	To prevent large energy dissipation / wire heating up / wire melting /	(1)	
	large pd across the wires OR to allow a large current		_
	Resistance of cable low	(1)	3
	(cross-sectional) area large [Not surface area]	(1)	
	[Reverse argument in terms of a thin wire acceptable for all points]		1
	Total for question		6

Question	Answer		Mark
Number			
7(a)	Use of $W = VIt$	(1)	
	$W = 69\ 000\ (J)$	(1)	
	Use of efficiency = (useful energy / total energy) (x 100%)	(1)	
	Efficiency = 0.42 (or 42%)	(1)	
	Or		
	Use of $P = IV$	(1)	
	Use of $P = W/t$ (to calculate rate of increase of internal energy of water)	(1)	
	Use of efficiency = (output power / input power) (x 100%)	(1)	
	Efficiency = 0.42 (or 42%)	(1)	4
	Efficiency = 0.42 (01 42%)	(1)	4
	Example of calculation		
	$\frac{12 \times 10^{10} \text{ constraints}}{12 \times 10^{10} \text{ cm}^2} = \frac{1}{2} \times 10^{10} \text{ cm}^2$		
	$W = 5.0 \text{ A} \times 250 \text{ V} \times 00 \text{ S} = 69000 \text{ J}$		
	Efficiency = $29\ 000\ \text{J}\/\ 69\ 000\ \text{J}$		
7(b)	Human body contains water molecules	(4)	
	Or body has same structure as food	(1)	
	So cells/tissues would gain internal energy	(1)	2
	(Accept cells/tissues would be heated)		
7(c) (i)	Waves spread out	(1)	
	After passing through a gap Or after passing around an obstacle	(1)	2
7(c)(ii)	Use of $c = f\lambda$ with $c = 3.0 \times 10^8$ m s ⁻¹	(1)	
	$\lambda = 0.12 \text{ m}$	(1)	2
	Example of calculation		
	$\lambda = 3.0 \times 10^8 \text{ m s}^{-1} \div 2.5 \times 10^9 \text{ Hz}$		
	$\lambda = 0.12 \text{ m}$		
7(c)(iii)	Diameter = 2mm	(1)	1
/(c)(iii)		(1)	-
*7(c)(iv)	(OWC – Work must be clear and organised in a logical manner using technical		
,(c)(1))	wording where appropriate)		
	wording where uppropriate)		
	Diffraction greatest when wavelength is about the same as gan size	(1)	
	Diffaction greatest when wavelength is about the same as gap size	(1)	
	Diameter of holes much greater than wavelength of light and diameter of holes		
	blaneter of notes inder greater than wavelength of right and traneter of notes	(1)	
	less man microwave waverengin	(1)	
	as no little differentian of light tales along		
	so no/nue diffraction of light takes place		
	Or so microwave radiation still diffracted through large angle but intensity is	(-)	
	very small.	(1)	3
	MP3 must follow on from relevant part of MP2		
	Total for Question		14